Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(7-8): 2469-2481, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36912903

RESUMO

The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) is considered an interesting alternative host for the recombinant protein production, that can be explored when the conventional bacterial expression systems fail. Indeed, the manufacture of all the difficult-to-express proteins produced so far in this bacterial platform gave back soluble and active products. Despite these promising results, the low yield of recombinant protein production achieved is hampering the wider and industrial exploitation of this psychrophilic cell factory. All the expression plasmids developed so far in PhTAC125 are based on the origin of replication of the endogenous pMtBL plasmid and are maintained at a very low copy number. In this work, we set up an experimental strategy to select mutated OriR sequences endowed with the ability to establish recombinant plasmids at higher multiplicity per cell. The solution to this major production bottleneck was achieved by the construction of a library of psychrophilic vectors, each containing a randomly mutated version of pMtBL OriR, and its screening by fluorescence-activated cell sorting (FACS). The selected clones allowed the identification of mutated OriR sequences effective in enhancing the plasmid copy number of approximately two orders of magnitude, and the production of the recombinant green fluorescent protein was increased up to twenty times approximately. Moreover, the molecular characterization of the different mutant OriR sequences allowed us to suggest some preliminary clues on the pMtBL replication mechanism that deserve to be further investigated in the future. KEY POINTS: • Setup of an electroporation procedure for Pseudoalteromonas haloplanktis TAC125. • Two order of magnitude improvement of OriR-derived psychrophilic expression systems. • Almost twenty times enhancement in Green fluorescent protein production.


Assuntos
Variações do Número de Cópias de DNA , Pseudoalteromonas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes/metabolismo , Plasmídeos/genética , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo
2.
Microb Cell Fact ; 21(1): 211, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242022

RESUMO

BACKGROUND: A significant fraction of the human proteome is still inaccessible to in vitro studies since the recombinant production of several proteins failed in conventional cell factories. Eukaryotic protein kinases are difficult-to-express in heterologous hosts due to folding issues both related to their catalytic and regulatory domains. Human CDKL5 belongs to this category. It is a serine/threonine protein kinase whose mutations are involved in CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental pathology still lacking a therapeutic intervention. The lack of successful CDKL5 manufacture hampered the exploitation of the otherwise highly promising enzyme replacement therapy. As almost two-thirds of the enzyme sequence is predicted to be intrinsically disordered, the recombinant product is either subjected to a massive proteolytic attack by host-encoded proteases or tends to form aggregates. Therefore, the use of an unconventional expression system can constitute a valid alternative to solve these issues. RESULTS: Using a multiparametric approach we managed to optimize the transcription of the CDKL5 gene and the synthesis of the recombinant protein in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 applying a bicistronic expression strategy, whose generalization for recombinant expression in the cold has been here confirmed with the use of a fluorescent reporter. The recombinant protein largely accumulated as a full-length product in the soluble cell lysate. We also demonstrated for the first time that full-length CDKL5 produced in Antarctic bacteria is catalytically active by using two independent assays, making feasible its recovery in native conditions from bacterial lysates as an active product, a result unmet in other bacteria so far. Finally, the setup of an in cellulo kinase assay allowed us to measure the impact of several CDD missense mutations on the kinase activity, providing new information towards a better understanding of CDD pathophysiology. CONCLUSIONS: Collectively, our data indicate that P. haloplanktis TAC125 can be a valuable platform for both the preparation of soluble active human CDKL5 and the study of structural-functional relationships in wild type and mutant CDKL5 forms. Furthermore, this paper further confirms the more general potentialities of exploitation of Antarctic bacteria to produce "intractable" proteins, especially those containing large intrinsically disordered regions.


Assuntos
Proteoma , Pseudoalteromonas , Regiões Antárticas , Temperatura Baixa , Síndromes Epilépticas , Humanos , Peptídeo Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteoma/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas Recombinantes , Serina , Espasmos Infantis , Treonina/metabolismo
3.
Res Microbiol ; 173(4-5): 103939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35307545

RESUMO

Since the release in 2005 of the genome sequence and annotation of the first Antarctic marine bacterium, the number of genomes of psychrophilic microorganisms in public databases has steadily increased. Unfortunately, the lack of effective molecular tools for the manipulation of these environmental strains still hampers our understanding of their peculiar strategies to thrive in freezing conditions, limiting the functional genomics approaches to differential analyses only. Over the past two decades, our research group established the first effective gene cloning/expression technology in the Antarctic Gram-negative marine bacterium Pseudoalteromonas haloplanktis TAC125. The setup of a genome mutagenesis technique (based on homologous recombination and counterselection events) further supported the use of this strain, which became an attractive model for studying microbial adaptations to freezing lifestyle. Moreover, to further extend the functional analyses to its essential genes, the set-up of a conditional gene silencing approach is desirable. In this paper, we report the development of an asRNA regulatory system in the Antarctic bacterium, testing the feasibility of Hfq-dependent and PTasRNA strategies previously developed in Escherichia coli. Stable and efficient silencing of two chromosomal genes was obtained by using PTasRNAs, reaching very high levels of downregulation.


Assuntos
Pseudoalteromonas , Regiões Antárticas , Clonagem Molecular , Escherichia coli/genética , Inativação Gênica , Pseudoalteromonas/genética
4.
Methods Mol Biol ; 2406: 219-232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089560

RESUMO

The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is an unconventional protein production host displaying a notable proficiency in the soluble production of difficult proteins, especially of human origin. Furthermore, the accumulation of recombinant products in insoluble aggregates has never been observed in this bacterium, indicating that its cellular physicochemical conditions and/or folding processes are rather different from those observed in mesophilic bacteria. The ability of this cell factory was challenged by producing a human protein, the cyclin-dependent kinase-like 5 (hCDKL5) in the bacterium cytoplasm at 0 °C. Human CDKL5 is a serine/threonine protein kinase characterized by the absence of a defined structure for the last two/third of its sequence, one of the largest intrinsically disordered regions so far observed in a human protein. This large unstructured domain makes difficult its production in most of the conventional hosts since the recombinant product accumulates as insoluble aggregates and/or is heavily proteolyzed. As the full-length hCDKL5 production is of great interest both for basic science and as protein drug for an enzyme replacement therapy, its production in the Antarctic bacterium was tested by combining the use of a regulated psychrophilic gene expression system with the use of a defined growth medium optimized for the host growth at subzero temperature. This is the first report of soluble and full-length recombinant production of hCDKL5 protein in a bacterium.


Assuntos
Pseudoalteromonas , Meios de Cultura/química , Humanos , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas Recombinantes/metabolismo , Temperatura
5.
Metabolites ; 11(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34436432

RESUMO

hCDKL5 refers to the human cyclin-dependent kinase like 5 that is primarily expressed in the brain. Mutations in its coding sequence are often causative of hCDKL5 deficiency disorder, a devastating neurodevelopmental disorder currently lacking a cure. The large-scale recombinant production of hCDKL5 is desirable to boost the translation of preclinical therapeutic approaches into the clinic. However, this is hampered by the intrinsically disordered nature of almost two-thirds of the hCDKL5 sequence, making this region more susceptible to proteolytic attack, and the observed toxicity when the enzyme is accumulated in the cytoplasm of eukaryotic host cells. The bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) is the only prokaryotic host in which the full-length production of hCDKL5 has been demonstrated. To date, a system-level understanding of the metabolic burden imposed by hCDKL5 production is missing, although it would be crucial for upscaling of the production process. Here, we combined experimental data on protein production and nutrients assimilation with metabolic modelling to infer the global consequences of hCDKL5 production in PhTAC125 and to identify potential overproduction targets. Our analyses showed a remarkable accuracy of the model in simulating the recombinant strain phenotype and also identified priority targets for optimised protein production.

6.
Microorganisms ; 8(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987756

RESUMO

Our group has used the marine bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) as a platform for the successful recombinant production of "difficult" proteins, including eukaryotic proteins, at low temperatures. However, there is still room for improvement both in the refinement of PhTAC125 expression plasmids and in the bacterium's intrinsic ability to accumulate and handle heterologous products. Here, we present an integrated approach of plasmid design and strain engineering finalized to increment the recombinant expression and optimize the inducer uptake in PhTAC125. To this aim, we developed the IPTG-inducible plasmid pP79 and an engineered PhTAC125 strain called KrPL LacY+. This mutant was designed to express the E. coli lactose permease and to produce only a truncated version of the endogenous Lon protease through an integration-deletion strategy. In the wild-type strain, pP79 assured a significantly better production of two reporters in comparison to the most recent expression vector employed in PhTAC125. Nevertheless, the use of KrPL LacY+ was crucial to achieving satisfying production levels using reasonable IPTG concentrations, even at 0 °C. Both the wild-type and the mutant recombinant strains are characterized by an average graded response upon IPTG induction and they will find different future applications depending on the desired levels of expression.

7.
Toxins (Basel) ; 12(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375387

RESUMO

Among gliomas, primary tumors originating from glial cells, glioblastoma (GBM) identified as WHO grade IV glioma, is the most common and aggressive malignant brain tumor. We have previously shown that the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) is remarkably effective as an anti-neoplastic agent in a mouse model of glioma, reducing the tumor volume, increasing survival, and maintaining the functional properties of peritumoral neurons. However, being unable to cross the blood-brain barrier (BBB), CNF1 requires injection directly into the brain, which is a very invasive administration route. Thus, to overcome this pitfall, we designed a CNF1 variant characterized by the presence of an N-terminal BBB-crossing tag. The variant was produced and we verified whether its activity was comparable to that of wild-type CNF1 in GBM cells. We investigated the signaling pathways engaged in the cell response to CNF1 variants to provide preliminary data to the subsequent studies in experimental animals. CNF1 may represent a novel avenue for GBM therapy, particularly because, besides blocking tumor growth, it also preserves the healthy surrounding tissue, maintaining its architecture and functionality. This renders CNF1 the most interesting candidate for the treatment of brain tumors, among other potentially effective bacterial toxins.


Assuntos
Antineoplásicos/farmacologia , Toxinas Bacterianas/farmacologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Permeabilidade Capilar , Proteínas de Escherichia coli/farmacologia , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais
8.
Sci Rep ; 9(1): 16444, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712730

RESUMO

Pseudoalteromonas haloplanktis TAC125 is among the most commonly studied bacteria adapted to cold environments. Aside from its ecological relevance, P. haloplanktis has a potential use for biotechnological applications. Due to its importance, we decided to take advantage of next generation sequencing (Illumina) and third generation sequencing (PacBio and Oxford Nanopore) technologies to resequence its genome. The availability of a reference genome, obtained using whole genome shotgun sequencing, allowed us to study and compare the results obtained by the different technologies and draw useful conclusions for future de novo genome assembly projects. We found that assembly polishing using Illumina reads is needed to achieve a consensus accuracy over 99.9% when using Oxford Nanopore sequencing, but not in PacBio sequencing. However, the dependency of consensus accuracy on coverage is lower in Oxford Nanopore than in PacBio, suggesting that a cost-effective solution might be the use of low coverage Oxford Nanopore sequencing together with Illumina reads. Despite the differences in consensus accuracy, all sequencing technologies revealed the presence of a large plasmid, pMEGA, which was undiscovered until now. Among the most interesting features of pMEGA is the presence of a putative error-prone polymerase regulated through the SOS response. Aside from the characterization of the newly discovered plasmid, we confirmed the sequence of the small plasmid pMtBL and uncovered the presence of a potential partitioning system. Crucially, this study shows that the combination of next and third generation sequencing technologies give us an unprecedented opportunity to characterize our bacterial model organisms at a very detailed level.


Assuntos
Genoma Bacteriano , Genômica , Infecções por Bactérias Gram-Negativas/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Pseudoalteromonas/genética , Organismos Aquáticos , Biologia Computacional/métodos , Genômica/métodos , Anotação de Sequência Molecular , Microbiologia da Água
9.
Microb Cell Fact ; 17(1): 126, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111331

RESUMO

BACKGROUND: Recent biotechnological advancements have allowed for the adoption of Lactococcus lactis, a typical component of starter cultures used in food industry, as the host for the production of food-grade recombinant targets. Among several advantages, L. lactis has the important feature of growing on lactose, the main carbohydrate in milk and a majoritarian component of dairy wastes, such as cheese whey. RESULTS: We have used recombinant L. lactis NZ9000 carrying the nisin inducible pNZ8148 vector to produce MNEI, a small sweet protein derived from monellin, with potential for food industry applications as a high intensity sweetener. We have been able to sustain this production using a medium based on the cheese whey from the production of ricotta cheese, with minimal pre-treatment of the waste. As a proof of concept, we have also tested these conditions for the production of MMP-9, a protein that had been previously successfully obtained from L. lactis cultures in standard growth conditions. CONCLUSIONS: Other than presenting a new system for the recombinant production of MNEI, more compliant with its potential applications in food industry, our results introduce a strategy to valorize dairy effluents through the synthesis of high added value recombinant proteins. Interestingly, the possibility of using this whey-derived medium relied greatly on the choice of the appropriate codon usage for the target gene. In fact, when a gene optimized for L. lactis was used, the production of MNEI proceeded with good yields. On the other hand, when an E. coli optimized gene was employed, protein synthesis was greatly reduced, to the point of being completely abated in the cheese whey-based medium. The production of MMP-9 was comparable to what observed in the reference conditions.


Assuntos
Queijo/microbiologia , Lactococcus lactis/metabolismo , Proteínas/metabolismo , Soro do Leite/metabolismo , Fermentação
10.
Biotechnol Prog ; 34(1): 150-159, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29063721

RESUMO

The Cytotoxic Necrotizing Factor 1 (CNF1) is a bacterial toxin secreted by certain Escherichia coli strains causing severe pathologies, making it a protein of pivotal interest in toxicology. In parallel, the CNF1 capability to influence important neuronal processes, like neuronal arborization, astrocytic support, and efficient ATP production, has been efficiently used in the treatment of neurological diseases, making it a promising candidate for therapy. Nonetheless, there are still some unsolved issues about the CNF1 mechanism of action and structuration probably caused by the difficulty to achieve sufficient amounts of the full-length protein for further studies. Here, we propose an efficient strategy for the production and purification of this toxin as a his-tagged recombinant protein from E. coli extracts (CNF1-H8). CNF1-H8 was expressed at the low temperature of 15°C to diminish its characteristic degradation. Then, its purification was achieved using an immobilized metal affinity chromatography (IMAC) and a size exclusion chromatography so as to collect up to 8 mg of protein per liter of culture in a highly pure form. Routine dynamic light scattering (DLS) experiments showed that the recombinant protein preparations were homogeneous and preserved this state for a long time. Furthermore, CNF1-H8 functionality was confirmed by testing its activity on purified RhoA and on HEp-2 cultured cells. Finally, a first structural characterization of the full-length toxin in terms of secondary structure and thermal stability was performed by circular dichroism (CD). These studies demonstrate that our system can be used to produce high quantities of pure recombinant protein for a detailed structural analysis. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:150-159, 2018.


Assuntos
Toxinas Bacterianas/isolamento & purificação , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/química , Proteínas Recombinantes/isolamento & purificação , Toxinas Bacterianas/química , Linhagem Celular , Cromatografia de Afinidade , Escherichia coli/genética , Proteínas de Escherichia coli/química , Humanos , Proteínas Recombinantes/química , Proteína rhoA de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...